Prostaglandin E2 reduces swine myocardial ischemia reperfusion injury via increased endothelial nitric oxide synthase and vascular endothelial growth factor expression levels

نویسندگان

  • Ying Zhou
  • Peng Yang
  • Aili Li
  • Xiaojun Ye
  • Shiyan Ren
  • Xianlun Li
چکیده

Prostaglandin E2 (PGE2) has been demonstrated to attenuate cardiac ischemia-reperfusion (I/R) injury. However, the underlying mechanism of PGE2 in cardiac I/R injury remains unknown. Upregulated expression levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) were reported in acute myocardial infarction (AMI), and were demonstrated to diminish I/R injury. In the current study the involvement of VEGF and eNOS in the myocardial protective effect of PGE2 were investigated in a catheter-based porcine model of AMI. Twenty-two Chinese miniature pigs were randomized into sham-surgery (n=6), control (n=8) and PGE2 (n=8) groups. PGE2 (1 µg/kg) was injected from 10 min prior to left anterior descending occlusion up to 1 h after reperfusion in the PGE2 group. Subsequently, the hemodynamic parameters were evaluated. Thioflavin-S and Evans Blue double staining were performed to evaluate the extent of the myocardial reperfusion area (RA) and no-reflow area (NRA). Immunohistochemical and western blot analysis were used to evaluate protein expression levels of VEGF and eNOS. Left ventricular (LV) systolic pressure significantly improved and LV end-diastolic pressure significantly decreased in the PGE2 group when compared with the control group 2 h after occlusion and 3 h after reperfusion (P<0.05, respectively). The RA and NRA were smaller in the PGE2 group than in the control group (P<0.05, respectively). Furthermore, PGE2 treatment increased the myocardial content of VEGF and eNOS when compared with the control group (P<0.05, respectively). Thus, the results of the present study demonstrate the cardio-protective mechanisms of PGE2, which may protect the heart from I/R injury via enhancement of VEGF and eNOS expression levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat

Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...

متن کامل

Chronic treatment with rosuvastatin modulates nitric oxide synthase expression and reduces ischemia-reperfusion injury in rat hearts.

OBJECTIVE Due to reported modulatory effects of statins on nitric oxide synthase (NOS) expression, we tested the hypothesis of protective effects of in vivo chronic treatment with rosuvastatin, a novel 3-hydroxy-3-methyl-glutaryl coenzyme A-reductase inhibitor, on ischemia-reperfusion injury, and investigated mechanisms involved. METHODS After 3 weeks of in vivo treatment with rosuvastatin (0...

متن کامل

Zofenopril Protects Against Myocardial Ischemia–Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability

BACKGROUND Zofenopril, a sulfhydrylated angiotensin-converting enzyme inhibitor (ACEI), reduces mortality and morbidity in infarcted patients to a greater extent than do other ACEIs. Zofenopril is a unique ACEI that has been shown to increase hydrogen sulfide (H2S) bioavailability and nitric oxide (NO) levels via bradykinin-dependent signaling. Both H2S and NO exert cytoprotective and antioxida...

متن کامل

Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance.

Reactive oxygen species (ROS), as superoxide and its metabolites, have important roles in vascular homeostasis as they are involved in various signaling processes. In many cardiovascular disease states, however, the release of ROS is increased. Uncontrolled ROS production leads to impaired endothelial function and consequently to vascular dysfunction. This review focuses on two clinical conditi...

متن کامل

Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors

Objective(s): Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017